Gesetze der boolschen Algebra


ODER-Operation ¦ UND-Operation
Kommutativgesetz: A \(\vee\) B = B \(\vee\) A ¦ A \(\wedge\) B = B \(\wedge\) A
Assoziativgesetz: A \(\vee\) (B \(\vee\) C) = (A \(\vee\) B) \(\vee\) C ¦ A \(\wedge\) (B \(\wedge\) C) = (A \(\wedge\) B) \(\wedge\) C
Distributivgesetz: A \(\vee\) (B \(\wedge\) C) = (A \(\vee\) B) \(\wedge\) (A \(\vee\) C) ¦ A \(\wedge\) (B \(\vee\) C) = (A \(\wedge\) B) \(\vee\) (A \(\wedge\) C)
Absorbtionsgesetz: A \(\vee\) (A \(\wedge\) B) = A ¦ A \(\wedge\) (A \(\vee\) B) = A
Komplementärgesetz: A \(\vee\) \(\neg\)A = 1 ¦ A \(\wedge\) \(\neg\)A = 0
Idempotenzgesetz: A \(\vee\) A = A ¦ A \(\wedge\) A = A
Neutralitätsgesetz: A \(\vee\) 0 = A ¦ A \(\wedge\) 1 = A
Extremalgesetz: A \(\vee\) 1 = 1 ¦ A \(\wedge\) 0 = 0
De Morgansches Gesetz: \(\neg\)(A \(\vee\) B) = \(\neg\)A \(\wedge\) \(\neg\)B ¦ \(\neg\)(A \(\wedge\) B) = \(\neg\)A \(\vee\) \(\neg\)B
Involutionsgesetz: \(\neg\)(\(\neg\)A) = A
Dualitätsgesetz: \(\neg\)1 = 0 \(\neg\)0 = 1

zum Leitprogramm